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Abstract-Buoyant flow of an optically thick fluid representative of molten glass or an oxide crystal melt 
is solved vl,a a finite element method using four different radiation models-the Rosseland diffusion 
approximation with and without radiation slip, the P, approximation, and a rigorous numerical treatment. 
The results indicate that both diffusion approximations fail to accurately predict thermal and flow fields in 
this problem due to their inability to represent thermal boundary layers. However, the P, approximation 
matches well with the rigorous numerical solution. This accuracy, coupled with implementation ease, favors 
the P, approximation for solution of problems of this type. 0 1998 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

Understanding heat transfer in fluids which absorb 
and emit radiant energy is a task complicated by the 
coupled, non1inea.r physical phenomena of internal 
radiation [1] and natural convection [2]. There are 
several specific problems of scientific and tech- 
nological interest in which heat transfer via radiation 
and convection occurs in optically thick liquids, such 
as the flow of the earth’s mantle [3], the flow of oxide 
melts during crystal growth [4], and the processing of 
molten glass [S-l;!]. In the mathematical modeling of 
these problems, va.rious approximations which rely on 
the short-range nature of radiant interactions have 
been commonly applied [13, 141. The purpose of this 
study is to examine the performance of these approxi- 
mations for modeling a representative problem of heat 
transfer and buoyant flow in optically thick fluids. 

The general interaction of radiant heat transfer and 
natural convection in finite enclosures has received 
considerable attention. Larson and Viskanta [ 151 stud- 
ied the effects of radiating walls in a two-dimensional 
rectangular enclosure filled with a totally transparent 
fluid. Lauriat [ 161 analyzed radiation heat transfer on 
the boundary layer regime in vertical slots of various 
aspect ratios. Webb and Viskanta [17] studied natural 
convection of a participating fluid in a rectangular 
cavity heated by incident radiant energy through a 
transparent side wall. Fusegi and Farouk [ 1 S] studied 
convection in a square enclosure for a wide range of 
Grashof and Prandtl numbers. Yticel et al. [19] and 
Tan and Howell [:20] solved for flow of an absorbing, 
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emitting, and scattering fluid in a differentially heated 
square enclosure. Salinger et al. [21] studied the effects 
of optical thickness and thermal gradients on the stab- 
ility and structure of flows in a cylindrical container 
heated from below. 

Molten glass processing is the most studied system 
involving the effects of internal radiation and fluid 
flow for optically thick fluids. Kellet [5, 61 was the 
first to show convincingly the importance of internal 
radiation through molten glass. Gardon [7] presented 
a comprehensive review of radiant heat transfer in 
glass. Noble et al. [8] modeled heat transfer and con- 
vection through a rectangular, two-dimensional 
enclosure representing an industrial glass melting fur- 
nace by employing the Rosseland diffusion approxi- 
mation. Ungan and Viskanta [9] modeled three- 
dimensional convection in a glass melting tank using a 
diffusion approximation. Carvalho et al. [lo] modeled 
heat transfer in molten glass using the diffusion 
approximation with a semi-empirical representation 
of boundary conditions. Mumane et al. [ 111 employed 
the commercial finite element code FIDAP to model 
the flow of molten glass in a melter using an effective 
thermal conductivity to account for radiant energy 
transfer. Roychowdhury and Srinivasan [ 121 modeled 
flows in the forehearth units of a glass tank furnace 
using a combination of optically thick and thin 
approximations. 

In this study, we present a critical analysis of several 
common approximations for modeling conduction, 
convection, and radiation occurring in optically thick 
fluids. We analyze a problem representative of the 
buoyant flow of a molten glass or an oxide crystal 
growth melt in a cylindrical container heated from the 
side, which is described in Section 2. The flow problem 
is solved using standard finite element methodology, 
while the contributions from radiant energy transfer 
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NOMENCLATURE 

zt 
optical absorption coefficient Greek symbols 
aspect ratio of cylinder B thermal expansivity 

c, heat capacity AT temperature difference (defined in text) 
e, unit vector in direction x emissivity of walls 
g gravitational constant ; absolute temperature ratio (defined in 
Gr Grashof number (defined in text) text) 
., 

I: 
total directional radiant intensity p viscosity 
identity tensor P density 

J irradiance u Stefan-Boltzmann constant 
k thermal conductivity z dimensionless absorption coefficient 
k, Rosseland radiant conductivity (optical thickness ; defined in text) 

(defined in text) CD’ biquadratic basis function 
1 radiant path length to boundary of ti Stokes streamfunction 

participating medium Y discontinuous linear basis function 
L cylinder height w solid angle. 
M total number of mathematical degrees 

of freedom 
?I refractive index Subscripts 
n unit vector pointing out of the 0 reference value 

participating medium h hot 
N conduction-to-radiation parameter max maximum value 

(defined in text) 
NT total number of nodes in finite element 

r, 2 components in coordinate directions 
W evaluated at wall. 

mesh 

NP total number of pressure unknowns 
P band-width of Jacobian matrix 
P dynamic pressure Superscripts 

Pr Prandtl number (defined in text) finite element basis function index 

qR radiant heat flux ;o finite element interpolant index 

r radial coordinate T transpose 

R cylinder radius dimensional quantity. 

T temperature 
T total stress tensor 
V velocity vector Mathematical symbols 
0, velocity component in direction x V divergence operator (defined in text) 
Z axial coordinate. dot product. 

are represented using several approaches-the 
Rosseland diffusion approximation with two different 
techniques for implementing boundary conditions, the 
PI approximation, as well as a rigorous finite element 
solution of the radiant transfer equation. These solu- 
tion methodologies are outlined in Section 3. The 
results, shown in Section 4 and discussed in Section 
5, clearly show the shortcomings of the Rosseland 
diffusion approximations for modeling heat transfer 
coupled with buoyant flow in an optically thick fluid. 
The P, approximation predicts the temperature and 
flow field much more accurately for the sample prob- 
lem considered here. 

2. PROBLEM DEFINITION 

We consider axisymmetric, steady flows driven by 
buoyancy within a cylinder with rigid, black walls. 

The cylinder is completely filled by an incompressible, 
Newtonian fluid with constant thermophysical 
properties. This fluid is considered to be sem- 
itransparent with gray radiant properties. The scat- 
tering of radiation by the fluid is assumed to be unim- 
portant and is not considered. 

The steady-state, incompressible Navier-Stokes 
equations, with the body force term represented by 
the Boussinesq approximation, are coupled with the 
energy balance equation, given in dimensionless forms 
by 

(v*V)v = V-T+ g(T-l)e, 

v-v=0 

(1) 

(2) 

(v*V)T = ; V’T- &V-q, 
> 

(3) 
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where v is the fluid velocity, V = e,a/ar+e,ajaz is the 
gradient operator with (e,, eJ denoting unit vectors in 
the cylindrical coordinate system, T is the total stress 
tensor, T is dimensionless temperature, and qR rep- 
resents the flux of radiant energy through the fluid. 
The dimensionless groups Gr, Pr, 7, N, and 0 are 
discussed below. The total stress tensor T appears 
above in equation. (1) and is defined for a Newtonian 
fluid as 

T := -PI+(Vv+(Vv)T) (4) 

where P is the dynamic pressure, I is the identity 
tensor, Vv is the dyadic product of the gradient oper- 
ator and the velocity vector, and the superscript T 
denotes the transpose operation. 

In the above equations, the velocity and dynamic 
pressure fields are scaled with p/pL and $/pL’, respec- 
tively, where /* is the viscosity of the fluid, p is the 
fluid density, and L is the height of the cylinder. The 
radial and axial coordinates are made dimensionless 
by scaling with L. The temperature field is non- 
dimensionalized by T = F/T,, where Fis the absolute 
temperature and T0 is the reference temperature, 
which is taken to be the minimum temperature applied 
to the cylinder surface. The radiant flux vector qR is 
scaled by n*oc, .where n is the index of refraction of 
the fluid and o is the Stefan-Boltzmann constant. 

The Grashof number, Gr, is a measure of the buoy- 
ant force acting u.pon the fluid and is defined as 

Gr = p*gL’BAT 
P2 

(5) 

where g is the gravitational constant and /? is the 
thermal expansivity of the fluid. The temperature 
difference across the cylinder is defined as 
AT = T,,- T,, with T,, denoting the maximum tem- 
perature applied to the cylinder surface. The Prandtl 
number, defined (as 

pr = clcp 
k 

is the ratio of viscous to thermal diffusivity ; C, is the 
fluid heat capacity, and k is the thermal conductivity. 
The remaining parameters arise from the radiation 
terms. The optical thickness, 

7 = aL (7) 

with a representing the optical absorption coefficient 
of the gray fluid, is a measure of the transparency 
of the medium to infrared radiation and is assumed 
independent of wavelength. The conduction-to-radi- 
ation parameter :is defined as 

ka 
N=- 

4n’aTi. 

The dimensionless conduction-to-radiation parameter 
naturally appears in the radiant terms and is a rough 
measure of the relative importance of conduction heat 

transfer with respect to radiant transport in an 
optically thick medium. Finally, the ratio of the tem- 
perature difference applied across the system to the 
reference temperature is defined to be 

The aspect ratio of the container is considered to 
be unity, so the axial and radial coordinates range 
between zero and one. No-slip and no-penetration 
conditions are specified for the velocity field along all 
walls of the cylinder, and axisymmetry is imposed 
along the centerline, 

U, = v, = 0, 0 < r < 1, z = 0,l (10) 

v,=v,=O, r=l, O<z<l (11) 

v,=au,/ar=o, r=O, O<z<l. (12) 

We consider that the container top and bottom are 
cool and isothermal and that the side-wall is heated 
with a parabolic temperature distribution. This par- 
ticular choice of boundary conditions represents a 
general condition of side-heating in a cylindrical 
geometry and was motivated after the work of 
Baumgartl et al. [22]. These thermal conditions are 
given in dimensionless form as 

T=l, O<r<l, z=O (13) 

T=l, O<r<l, z=l (14) 

T= 1+4z(l-z)O, r= 1, O<z< 1. (15) 

The total normal heat flux is prescribed to be zero 
along center axis by symmetry, 

e;(VT-$qR)=O, r=O, <z<l. (16) 

3. SOLUTION METHODOLOGY 

3.1. Radiant transport 
The divergence of the radiant flux vector represents 

the contribution of internal radiant transfer to the 
energy balance of equation (3) and is given by [ 141 

where i’ is the dimensionless radiant intensity (scaled 
by n’aT$ and o is the solid angle of a spherical 
geometry centered at the point of interest. 

The dependence of the radiant intensity on the solid 
angle, w, is given by 

i’(w) = i;(w) exp [-d(w)] 

+ i 1 T’(I*)exp[-7(l-l*)]dZ* 
s 

(18) 

where I denotes the distance from the domain bound- 
aries to the point of interest along the solid angle w 
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and I* is a dummy variable of integration. The first 
term on the right-hand side of equation (18) represents 
the intensity coming from the boundaries, while the 
integral term accounts for the contributions from the 
intervening fluid. 

The intensity emanating from the boundaries in the 
case of black (non-reflecting) walls is simply 

The more general expression for c(w) in the case of 
gray walls has been considered in past analyses using 
the rigorous radiation method discussed in the next 
section; see, e.g., [23-261. While the assumption of 
black walls simplifies the current analysis, this choice 
is also appropriate for the test problem considered 
here. Black walls magnify the importance of radiant 
fluxes near the wall and therefore represent a chal- 
lenging test case for the problem at hand. Highly 
reflecting walls represent another challenge for solu- 
tion accuracy of the global radiation field ; however, 
this case is not considered here. 

Accounting for radiation energy transfer introduces 
significant complications into the equation of change 
of energy. The inclusion of equations (17)-(19) con- 
verts equation (3) to an integro-differential equation 
which is extremely challenging to solve. Viskanta and 
Anderson [l] and Siegel and Howell [ 141 present many 
approaches for solving this equation ; advances in 
methodologies are also discussed by Chan [27] and 
Howell [28]. For our test problem involving an 
optically thick medium, we employ four different 
methods to account for radiant heat transfer. These 
approaches are described below. 

3.1.1. Roseland diffusion approaches. These 
approaches rely on the short-range nature of radiant 
interactions in an optically thick medium, so that the 
radiant flux vector can be approximated as [ 13, 141 

16n*c~~~ tjR = - TVT= -k,Vp (20) 

where k, is the radiant conductivity defined as 

16n2rrT3 
k, = 7 (21) 

and the tilde represents a dimensional quantity. 
Now the former integro-differential energy equa- 

tion, equation (3), is simplified to a nonlinear partial 
differential equation by using the above radiant con- 
ductivity to combine the conductive and radiant fluxes 
to yield the following dimensionless equation, 

(22) 

The model problem posed above is solved using the 
field equations (1) and (2) coupled with this new 
energy equation (22). 

While the Rosseland diffusion approximation yields 

a single, consistent set of field equations, there are at 
least two different manners in which to apply bound- 
ary conditions. The first approach, which refer to sub- 
sequently as the no-slip method, is to directly apply 
the conditions specified in equations (13)-Q 5) for the 
wall temperatures. 

The second approach attempts to remedy the fact 
that the diffusion approximation breaks down near 
system boundaries. In this approach, which we refer 
to as the slip method, we specify an effective boundary 
temperature to allow for a discontinuity, or slip [14], 
of the temperature field as the boundary is 
approached. We employ the particular approximation 
introduced by Howell and Goldstein [29], which was 
derived using asymptotic expansions to match lin- 
earized solutions near the wall with the diffusion solu- 
tion far from the wall in a conduction-radiation prob- 
lem. Using this approach, we replace the boundary 
temperatures of equations (13)-( 15) with extrapolated 
temperatures obtained from a slip coefficient which 
depends only on the conduction-to-radiation 
parameter. For the sake of brevity, we omit the details 
of this standard approach ; the interested reader is 
referred to [ 141 and [29] for further information. 

3.1.2. P, approach. The P, approximation (also 
known as the differential and Milne-Eddington 
approximations [14]) relies on reducing the integral 
terms of the radiation transfer equation to differential 
terms via a finite set of moment equations. Using this 
approximation, we replace the integral of the radiant 
intensity in equation (17) with the irradiance J(r, z) [l] 
to give the following nondimensional expression, 

v-q, = z[4T’-J(r,z)]. (23) 

As in the previous analyses, the former integro- 
differential energy equation (3) is again simplified to 
a nonlinear partial differential equation to yield 

V”T-&[4%J(r,z)] (24) 

The partial differential moment equation for the 
irradiance is given by 

V2J = 3z’[J(r,z)-47-7. (25) 

The model problem is now solved using the original 
field equations (1) and (2) coupled with the new energy 
equation (24) and the irradiance equation (25). While 
the P, formulation introduces one more field variable 
J(r, z) and an additional partial differential equation 
(25) to the analysis, the extra computational effort 
involved for solution is modest, particularly compared 
to the costs of solving an integro-differential equation 
(see Section 3.2). 

Unlike the Rosseland diffusion approximation dis- 
cussed above, there is no ambiguity about boundary 
conditions for the P, approximation. Boundary con- 
ditions for the temperature field are applied directly 
from the prescribed wall temperature distributions, 
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equations (13x15). The boundary conditions for the 
additional irradiance equation (25) are prescribed 
along all the black walls as 

-o*VJ=;[J,(r,z)-4T’,], (26) 

where n is the outward-pointing normal along each 
surface and the subscript w denotes the value of the 
indicated variable at the wall. A symmetry condition 
is supplied along the system centerline, 

e;VJ= 0. (27) 

3.1.3. Rigorous approach. In this approach, we 
apply the finite element method of Brandon and 
Derby [23, 241 to evaluate the radiant contributions 
of the above equations explicitly. While the details of 
this formulation are omitted here (interested readers 
are referred to the references above), the major fea- 
tures include the evaluation of the integral expressions 
of equations (17) and (18) using localized spherical 
coordinate systems, repeated Gaussian quadrature, 
and self-consistent interpolation of the temperature 
field via a finite element basis. This scheme represents 
a numerical solution of the exact integro-differential 
equation set (l)-(3) and is capable of representing 
radiant heat transfer of any optical thickness. In 
addition, the scheme is highly accurate, flexible, and 
robust [23,24]. 

The disadvantage of this approach is that it is quite 
computationally intensive. Therefore, of particular 
importance for this problem is the utilization of a 
cost-effective approximation technique, based on the 
method of Swartz and Wendroff [30] to reduce the 
overall computa.tional burden associated with cal- 
culating the radiant terms. Since the system geometry 
is fixed, the geometrical portion of the radiation inte- 
grals can be computed once and stored ; see [21, 24, 
3 1] for more details. This procedure is similar in spirit 
to the zonal method of Hottel [32], but it can be 
applied in a self-consistent manner to the higher-order 
approximations of the temperature field employed by 
finite element methods. 

3.2. Discretization via thefimite element method 
We apply the Galerkin finite element method [33, 

341 to solve for the dimensionless velocity, pressure, 
and temperature fields. The axisymmetric com- 
putational domain is discretized using two-dimen- 
sional, quadrilateral elements, and the velocity field, 
temperature field, and irradiance field (for the P, 
approximation) are expanded by nine-node, Lan- 
grangian biquadratic basis functions, @(r,z), in the 
following manner, 

NT v(‘)e 
v(r, 4 = 1 ’ 

[ 1 i= 1 v(‘)e 
’ W(r,z) 

z 1 
(28) 

T(r, z) = z 7W+(r, z) 
i=l 

J(r, z) = 5 #‘I@@, z) 
i= I 

(for the P, approximation only) (30) 

where NT is the number of nodes in the mesh and v?, 
v$), 7@‘, and J’” represent the interpolated velocity 
component, temperature, and irradiance values at 
each node. The dynamic pressure in the fluid is 
approximated by discontinuous linear basis functions 
[35, 361, 

P(r, z) = 3 PV(r, z) 
i=l 

(31) 

where Np is the number of pressure unknowns (three 
per element). This mixed-order formulation (some- 
times called the Q2Pl or 9/3 element [35]) has been 
demonstrated to be particularly efficient when used 
with the Galerkin finite element method to solve for 
incompressible flows [3640]. 

The Galerkin method is used to form a set of weigh- 
ted residuals which discretize the original integro- 
differential equations (for the rigorous method) or 
partial differential equations (for the diffusion and P, 
methods), and boundary conditions are applied in the 
standard manner [33, 341. The weighted residuals are 
integrated numerically using Gauss-Legendre quad- 
rature to form a large set of nonlinear algebraic equa- 
tions, which are solved using a full Newton-Raphson 
iterative technique employing a direct matrix solver 
[41]. All elements of the Jacobian matrix are calculated 
analytically. 

A regular 8 x 8 mesh of 64 biquadratic elements and 
1059 mathematical unknowns (1348 mathematical 
unknowns for the P, approximation) is employed for 
all calculations shown here. This discretization was 
judged to be numerically convergent based on prior 
analyses of buoyant flows of radiantly participating 
fluids [39]. For this discretization, approximately 7 
CPU s (12 CPU s for the P, method) on the Cray 
X-MP of the Minnesota Supercomputer Center are 
needed per Newton iteration to solve the field equa- 
tions, with 4-6 Newton iterations to obtain a fully 
converged solution (for all methods). 

The computational effort expended for each New- 
ton iteration is dominated by the direct LU decompo- 
sition of the Jacobian matrix arising from this strongly 
coupled, non-linear problem. The LU decomposition 
scales with the total problem size (M) and the band- 
width (p) of the Jacobian matrix as O(Mp*) [41]. Since 
these did not change for the two implementations of 
the Rosseland diffusion methods, the effort needed 
for these methods was identical. As indicated above, 
additional effort was needed for the P, approach due 
to the extra degrees of freedom associated with dis- 
cretization of the irradiance. For the rigorous 
approach, the Jacobian matrix is in theory quite dense, 
and its decomposition would require O(@) oper- 
ations for the general case. However, for an optically 
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Table 1. Dimensionless parameters and groups 

Description Symbol and definition Value 

Aspect ratio 
Emissivity of walls 
Absolute temperature ratio 
Prandtl number 
Conduction-to-radiation number 
Optical thickness 
Grashof number 

A = L/R 1 
8, 1 
0 = (Th-- T,)/T, l/3 
Pr = &,/k 500 
N = ka/(4n2aTi) 0.1 
7 = aL 10 
Gr = p2gL3pAT/p2 (t2060 

thick medium, as is considered here, the rapid decay 
of the exponentials in the radiation intensity integral, 
equation (18) enables the use of certain ‘cut-off cri- 
teria to decide when it is appropriate to ignore the 
contribution of certain terms (see [24] for a detailed 
explanation of this procedure). The use of these cut- 
off criteria and the inherently large bandwidth already 
imposed by discretization of the velocity and pressure 
fields resulted in a negligible increase in the bandwidth 
of the Jacobian matrix, thus yielding nearly identical 
CPU times for the solution of the rigorous method 
compared with the Rosseland diffusion approaches. 
However, there was an additional one-time cal- 
culation requiring approximately 60 CPU s to evalu- 
ate the Swartz-Wendroff radiation factors for the rig- 
orous approach (see the prior discussion in Section 
3.1.3). 

metric about z = 0.5. In this plot, the difference 
between the P, model prediction and the profile com- 
puted with the rigorous treatment are virtually indis- 
tinguishable. Both solutions capture the boundary 
layer region near the wall where both conduction and 
radiation are important. In contrast, neither of the 
solutions obtained with the Rosseland methods com- 
pare well over the entire domain. The Rosseland 
model with slip matches the profile predicted by the 
rigorous treatment reasonably well, except near the 
walls at z = 0 and z = 1. The no-slip Rosseland model 
matches only at the walls. 

4. RESULTS AND DISCUSSION 

We perform calculations using the four radiant heat 
transfer models on the problem described above and 
with a set of therrnophysical properties which are rep- 
resentative of molten glass or an oxide crystal growth 
melt. These properties are listed in Table 1. To con- 
sider the effect of differing driving forces for buoyant 
flow, we vary the dimensionless Grashof number as 
the primary variable in this study. 

A comparison of these methods for the case of no 
flow, Gr = 0, is shown in Fig. 1, where isotherms 
indicate the temperature field throughout the cyl- 
indrical domain. Heat flows from the outer cylindrical 
wall (r = 1 on the right-hand-side of the domains) 
toward the upper and lower surfaces (z = 0 and 
z = 1). There is no flux of heat across the cylinder 
centerline (I = 0 on the left-hand-side of the domains) 
due to the symmetry condition imposed there. With- 
out convection there is also symmetry of the tem- 
perature field about the z = 0.5 plane. The tem- 
perature field predicted with the P, method is very 
similar to that predicted by the rigorous treatment, 
while there are noticeable differences in the Rosseland 
diffusion methods. 

Figures 3 and 4 show temperature and flow fields, 
respectively, predicted by each model for the case of 
conduction, radiation, and significant levels of con- 
vection, Gr = 2060. The distorted temperature fields 
displayed in Fig. 3 are very different than those of 
the no flow cases and are caused by the effects of 
counterclockwise convective flow cell. The tem- 
perature field through the middle portion of the 
domain is vertically stratified, with nearly horizontal 
isotherms, and thermal boundary layers have formed 
along the outer cylinder walls and the centerline. As 
in the prior Gr = 0 cases, the temperature fields pre- 
dicted by the rigorous treatment and the P, model 
show very good agreement. The predictions by the 
Rosseland diffusion models are qualitatively similar 
to the rigorous solution but quantitatively different, 
especially that of the no-slip approach. 

Also evident in the thermal fields predicted by the 
rigorous and P, models are small oscillations in the 
solution near the vertical wall and centerline boundary 
layers. These oscillations or ‘wiggles’ are commonly 
observed in solutions to transport problems obtained 
using the Galerkin finite element method and broad- 
cast a signal regarding the accuracy of the solutions 
[42]. Since the objective of this study was to directly 
compare the performance of the various formulations 
under comparable discretizations, we did not pursue 
an extensive study of this issue. We comment further 
on the significance of resolving thermal boundary lay- 
ers in problems such as those posed here in the ensuing 
section. 

These differences are made clearer in Fig. 2, where The flows in this system are driven by horizontal 
the axial temperature profiles for each case are shown thermal gradients ; the primary counterclockwise flow 
at the radial position midway between centerline and is up along the heated outer wall and down at the 
wall. Notice again that the temperature profile is sym- centerline, as shown by streamlines of the dimen- 
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Rigorous Radiation P 1 Approximation 

Roseland -- Slip Rosseland -- No Slip 

Fig. 1. The temperature fields predicted by each model are shown for the case of no flow, Gr = 0, by 20 
isotherms plotted evenly between T,, (at r = 1, .z = 0.5) and r, (along top and bottom surfaces). Every fifth 

isotherm is represented by a bold line. 

0.6 

0.4 

F 

0.2 

0.0 
0.0 0.5 1.0 

Temperature Profiles at r=O.S, Gr=O 

Z 
Fig. 2. The axial temperature profile midway between the centerline and side wall (r = 0.5) is shown for 
each model for the case of no flow, Gr = 0. The zero plotting temperature corresponds to r,, while Th 

corresponds to unity. 
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Rigorous Radiation Pl Approximation 

Rosseland -- Slip Rosseland -- No Slip 

Fig. 3. The temperature fields predicted by each model are shown for the case strong flow, Gr = 2060, by 
20 isotherms plotted evenly between T,, (at r = 1, z = 0.5) and To (along top and bottom surfaces). Every 

fifth isotherm is represented by a bold line. 

sionless Stokes streamfunction $(r,z) in Fig. 4. In 
addition, a very weak Moffat eddy [43], which flows 
in a clockwise direction, is nested in the upper corner 
of the ampoule. The structure of the flows predicted 
by all models is very similar, yet the strength of the 
flows varies considerably. The maximum stream- 
function is indicative of the strength of these flows and 
ranges from $,,, = 0.21 for the rigorous treatment to 
1(1,,, = 0.29 for the no-slip Rosseland model. 

The axial temperature profiles predicted for each 
model are shown at the radial position midway 
between centerline and wall for the Gr = 2060 case in 
Fig. 5. Under the influence of the strong flow inward 
across the top surface and outward along the bottom, 
the temperature profiles are skewed toward z = 1. For 
this case, the PI approximation continues to match 
well the rigorous solution. Although there are some 
deviations between the two predictions within the bulk 
of the domain, the PI method solution closely tracks 
the rigorous temperature profile near the top and 
bottom surfaces. The solutions obtained with the 
Rosseland methods do not compare well with that 
from the rigorous treatment. While the Rosseland 
model with slip tracks near the rigorous solution in 
the bulk, it does not resolve the thermal boundary 
layers near the surfaces. The no-slip Rosseland model 

matches only at the walls and significantly over-predicts 
temperatures through the bulk. 

5. CONCLUSIONS 

We have implemented four different approaches to 
solve for radiation energy transport within an 
optically thick fluid which is experiencing buoyancy- 
driven flow. This problem was constructed to feature 
coupled heat transfer via conduction, internal radi- 
ation, and natural convection in a system qualitatively 
similar to those encountered in molten glass pro- 
cessing or the growth of an oxide crystal from the 
melt. The choice of any one of the solution methods 
will depend upon implementation ease, computational 
effort needed for solution, and the accuracy of the 
solution. Only a limited number of cases are con- 
sidered in this study, nevertheless the results clearly 
suggest some recommendations. 

The Rosseland approximations were easy to 
implement and economical in computing needs. These 
issues are especially important with regard to incor- 
porating internal radiant heat transfer into existing 
heat transfer codes (see, e.g., [l 11). However, this sim- 
plicity carries with it a significant source of inac- 
curacy-the inability of this method to capture the 
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Fig. 4. The flow fields predicted by each model are shown for the case of strong flow, Gr = 2060. Streamlines 
are drawn with a uniform spacing of A$ = 0.015 with the zero streamline indicated by a dotted line. 
Streamfunction maxima are I)~.. = 0.21 for the rigorous solution, I&, = 0.22 for the P, method solution, 
$,, = 0.23 for the Rosseland model with radiation slip, and Jl,_ = 0.29 for the Rosseland model with no 

radiation slip. 

physics of the thermal boundary layer near walls. 
Indeed, this downfall may lead to significant error, 
especially in sysi.ems such as this where the thermal 
boundary layers are important for driving flow. Of 
the two implementations, the Rosseland method with 
slip is the more accurate in matching temperature 
profiles away from the system boundaries. However, 
this is not an endorsement for the Rosseland slip 
approach, since the accuracy of this method will likely 
continue to degrade with increased convection and 
progressively sharper boundary layers. 

The P, method is slightly more difficult to 
implement than the Rosseland diffusion methods, 
since it requires solving an additional coupled partial 
differential equation for an additional field variable, 
the irradiance. Also, the computational effort needed 
to solve with the Pi method is slighter greater than 
that needed for the Rosseland diffusion methods. 
However, this effort is significantly less than solution 
of the original integro-differential energy equation via 
the rigorous treatment, since the new set of equations 
are coupled partial differential equations, whose solu- 
tion is readily computed. For the problem considered 
here, the P, approximation yielded surprisingly accu- 
rate results compared to the solutions obtained from 

the rigorous treatment. Of course, it is well known 
that the P, approximation is valid for optically thick 
media ; e.g., Ratzel and Howell [44] showed that the 
P, approximation performed poorly for media not 
optically thick in a study of radiant and conduction 
energy transfer in a gray absorbing and emitting 
medium. This restriction may become increasingly 
important for modeling systems which exhibit intense 
flows. Vigorous convection will lead to large gradients 
in the thermal field as the temperature of well-mixed 
bulk connects with the wall temperature through thin 
boundary layers. When the width of these boundary 
layers approaches the length scale of the mean free 
path for radiation, namely l/a, one would expect that 
the optically thick approximation, upon which the P, 
approximation relies [ 14,441, would break down and 
lead to significant error. 

The rigorous calculation using the method of Bran- 
don and Derby [23, 241 requires significant effort for 
implementation as well as computation of solutions. 
However, the payoff is a method which computes 
accurate results for media of any optical thickness. 
This feature may also be important for accurately 
computing heat transfer at convection levels still 
higher than those considered here where very thin 



1414 J. J. DERBY et al. 

Temperature Profiles at r=OS, Gr=ZOf30 

Rigorous. Radiation 

Pl Approximation 

Rosseland -- Slip 

Rosseland -- No Slip 

Fig. 5. The axial temperature profile midway between the centerline and side wall (r = 0.5) is shown for 
each model for the case of strong flow, Gr = 2060. The zero plotting temperature corresponds to T,, while 

T,, corresponds to unity. 

boundary layers occur, as discussed in the preceding 
paragraph. 

Based on the results of this analysis, we advocate 
the use of the PI formulation for the solution of buoy- 
ant flows in optically thick fluids, such as those en- 
countered in glass processing or oxide melt crystal 
growth systems, with the proviso that extremely 
intense convective flows may require special con- 
siderations. While not as easily implemented as the 
Rosseland diffusion formulations nor as accurate for 
the general radiation problem as rigorous numerical 
methods, this approach proved optimal for the prob- 
lem studied here in terms of algorithmic implemen- 
tation, computational costs, and solution accuracy. 
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